
javabr idge(3) Librar y Functions Manual javabr idge(3)

NAME
JavaBr idge − Enable invocation of java classes from C

SYNOPSIS
Enable C to talk with the protocol exposed by php-java-br idge. Alter natly, allow C to call java with-
out complex JNI.

DESCRIPTION
The javabr idge librar y is a C binding of the communication protocol utilised by php-java-br idge.

(Please refer to http://php-java-br idge.sf.net for that project)

The motivation for this librar y was frustration with other methods of getting C to invoke java. I find
JNI with its dependancy on java versions and etc. to be cumbersome - particular ly when cross
compiling. Also with either JNI or a direct system call to java there is an overhead for each
invocation with the JVM instantiating. To do RPC / SOAP calls to a java application server
requires Tomcat or the like running, and for any simple application I again found this to be cum-
bersome.

The good people at php-java-br idge.sf.net have built an excellent pure java application that can
either be installed into a java application server or can be run in a standalone fashion. Their
project provides a bridge allowing PHP to call java. Their method is a simple XML communication
from PHP to the java bridge application. The application takes care of reflecting java classes
called for, and sends the answers back to PHP.

This librar y is an C implimentation of that communication protocol. Additionally, this librar y can
fork the java bridge application in standalone mode so that a java ser vlet engine is not required.

In the event you wish to run java-pr idge in a proper application server like Tomcat, please refer to
the extensive documentation available at http://php-java-br idge.sf.net The documentation herein
is confined to starting a stand-alone application server, and the bindings provided to enable C to
talk to that server in-order to invoke java from C.

LIBRARY DETAIL
Environment variables

JAVABRIDGE_LISTENPORT overr ides the compiled in default TCP port (9267) that the java
application server is (or should) listening on.

JAVABRIDGE_CONFPATH overr ides the location of javabr idge.conf. This should be an absolute
path to the relevant file. If this exists it overr ides the path passed to the librar y from star tJservice

CLASSPATH makes additional java classes available to the java application server. Nor mal java
syntax for CLASSPATH on your platfor m applies

TypeDefs in the library
javaConnection is an int. Carries an opened socket to the java application server.

javaObject is an unsigned int. Carries an particular java class or object.

Defined return values
jERROR === 0 jFALSE === -1 jTRUE === -2 jVOID === -3

Java application server functions
javaConnection star tJser vice (char *confPath)

This should be the first call to the libarar y.

It will first test if the java application server is listening on the configured port, and if not it will start
the server. It then opens communication to the running java application server

The function will abort (i.e. exit with failure) under the following circumstances.

5 May 2015 1

javabr idge(3) Librar y Functions Manual javabr idge(3)

JavaBr idge.jar is not locatable on the classpath definined in either javabr idge.conf or by
the CLASSPATH environment var iable.

On windows, TCP/IP initialisation failure occurs.

Inability to create a socket.

Communication is established to some service at JAVABRIDGE_LISTENPORT, but that
ser vice does not respond as expected.

When no servce is found at JAVABRIDGE_LISTENPORT, and a for k of the standalone
java application server fails.

A standalone java application server is star ted but does not respond as expected within
120 seconds.

It returns a handle to talk to the service with. In reality the handle is a connected socket.

void stopJservice (ja vaConnection)

This should be the last call to the libarar y.

It closes communication with the java application server. The paramter is the socket that is
retur ned when opening a connection to the server.

Note: this DOES NOT stop the java application server running. If you REALLY want to stop the
application server, see stopJser vice below. Obviously, after this nothing will wor k, including
stopJser vice

void killJservice (ja vaConnection)

This shouldn’t be called unless you REALLY want to stop the JavaBr idge ser vice.

It forces a halt of the JVM and any stuff opened by the JVM will be left where they were. The
paramter is the socket that is returned when opening a connection to the server.

Note: this STOPS the java application server uncleanly. I don’t recommend that you do this to an
instance running in Tomcat or the like, how ever it will successfully kill a standalone invocation.
Obviously, after this nothing will wor k, including stopJser vice

Java bridg e communication functions
javaObject getJclass (ja vaConnection sock, ja vaObject *jException, char *jClass)

Allows manipulation of a java class without instatitating an object. Java exper ts can help with
when to do this. A good example is when you want to do java.lang.Class.forName("someClass").

Input is a handle of an open socket to the server, the address of an exception javaObject, and a
str ing defining the class desired, for example "java.sql.Dr iverManager".

It returns type javaObject, or any of the jXXXX answers. If jERROR (== 0) is returned then jEx-
ception will refer to a java exception that can be interrogated for more detail.

Note: The return is NOT a real java object, and is only used as a refererence to static class mem-
bers.

javaObject constructJobject (ja vaConnection sock, ja vaObject *jException, char *jClass,
char *formatStr , ...)

Creates an instance (or object) from a class. So:

javaObject aString = constructJobject(jvm, &anException,
"java.lang.String", "%s", "Hello World");

is equivalant to the java statement

aString = new String("Hello World");

Input is a handle of an open socket to the server, the address of an exception javaObject, a string
defining the class desired, a for mat str ing defining paramaters to the java class instantition, and

5 May 2015 2

javabr idge(3) Librar y Functions Manual javabr idge(3)

the actual paramaters to the java class. (See Parameters&for mats below for more infor mation
about this).

It returns type javaObject, or 0 on failure. If jERROR (== 0) is returned then jException will refer to
a java exception that can be interrogated for more detail.

javaObject in vokeJobject (ja vaConnection sock, ja vaObject *jException, ja vaObject jObj,
char *jMethod, char *formatStr , ...)

Allows calling a method in an instantiated java class (or object), or calling a static method in a
java reference class. So:

javaObject aNum_a = constructJobject(jvm, &anException,
"java.math.BigInteger", "%s", "6");

javaObject aNum_b = constructJobject(jvm, &anException,
"java.math.BigInteger", "%d", 1);

javaObject aNum_c in vokeJobject(jvm, &anException,
aNum_a, ad d , %o , aNum_b);

is equivalant to the java

import java.math.*;
aNum_a = new BigInteger("6");
aNum_b = new BigInteger(1);
aNum_c = aNum_a.add(aNum_b);

Input is a handle of an open socket to the server, the address of an exception javaObject, a previ-
ously instantiated object, a string defining the object method desired, a for mat str ing defining
paramaters to the java method, and the actual paramaters for the method. (See Parameters&for-
mats below for more infor mation about this).

It returns type javaObject, or any of the jXXXX answers. If jERROR (== 0) is returned then jEx-
ception will refer to a java exception that can be interrogated for more detail.

int setJpr oper ty (javaConnection sock, ja vaObject jObj, char *jPr oper ty , char *f ormatStr , ...
)

Allows setting an object property. I haven’t found use for this yet, but php-java-br idge impliments
it, and I guess a java exper t will know when to do this.

Input is a handle of an open socket to the server, the address of an exception javaObject, a previ-
ously instantiated object, a string defining the object property desired, a for mat str ing defining
paramaters to the java proper ty, and the actual paramaters for the property. (See Parameters&for-
mats below for more infor mation about this). I guess by definition you should only pass one
parameter to a class property.

It returns non zero on success, or jERROR on failure. If jERROR (= 0) is returned then jException
will refer to a java exception that can be interrogated for more detail.

void releaseJobject (ja vaConnection sock, ja vaObject jObj)

Tells the java application server that you are done with this construct. Allows garbage collection in
the invoked JVM for this construct. In shor t, if you create it, then release it.

Input is a handle of an open socket to the server, and previously instantiated object

char *getJexception (ja vaConnection sock, ja vaObject jObj)

Given that some funtion has returned jERROR (== 0), return a str ing representation of the java
exception.

Note: you should free() this string when you are done with it.

Note: you should also releaseJobject on the jException object when you are done with it
to allow the JVM to do garbage collection.

5 May 2015 3

javabr idge(3) Librar y Functions Manual javabr idge(3)

Input is a handle of an open socket to the server, and a previously set jException object.

It returns a char pointer to the error string on success, or NULL otherwise.

void releaseJobject (ja vaConnection sock, ja vaObject jObj)

Tells the java application server that you are done with this construct. Allows garbage collection in
the invoked JVM for this construct. In shor t, if you create it, then release it. Remeber to invoke
close() or release or whatever java expects of the object to clear references in the JVM to this
object first.

Input is a handle of an open socket to the server, and previously instantiated object.

char *getJexception (ja vaConnection sock, ja vaObject jObj)

Given that some funtion has returned jERROR (== 0), return a str ing representation of the java
exception.

Note: you should free() this string when you are done with it.

Note: you should also releaseJobject on the jException object when you are done with it
to allow the JVM to do garbage collection.

int getJboolean (ja vaConnection sock, ja vaObject jObj)

Attempt to get a BOOLEAN (TRUE == !0 or FALSE == 0) result from the given object.

Input is a handle of an open socket to the server, and previously instantiated object.

Will return either a 0 or a 1.

char *getJstring (ja vaConnection sock, ja vaObject jObj)

Attempt to get a string (char *) result from the given object.

Note: you should free() this string when you are done with it.

Input is a handle of an open socket to the server, and previously instantiated object.

Will return either a 0 or a 1.

int64_t getJlong (ja vaConnection sock, ja vaObject jObj)

Attempt to get a long (int64_t) result from the given object.

Input is a handle of an open socket to the server, and previously instantiated object.

Will return (as best as it can) a (signed) numer ic representation of the requested class.

doub le getJdoub le (javaConnection sock, ja vaObject jObj) Attempt to get a floating (double)
result from the given object.

Input is a handle of an open socket to the server, and previously instantiated object.

Will return (as best as it can) a double representation of the requested class. On failure returns C
"nan".

Parameters&formats
Instatiation of java classes or calls to java methods in a object / class often need parameters. This
librar y handles that requirement similarly to printf() and friends. The first parameter is a string with
format flags defining how the remaining parameters should be treated.

Anything after the (required) for mat str ing is interpreted as a particular C type and passed
through to the java application server as a representation of that parameter.

Where a parameter can be expexted but you don’t wish or need to send one, pass a NULL to the
format string parameter.

Format strings currently understood are:

%o - send a "java object" or "class" to the JVM

5 May 2015 4

javabr idge(3) Librar y Functions Manual javabr idge(3)

%s - send a string to the JVM

%d - send an integer to the JVM

%f - send a double (or float) to the JVM

%b - send a boolean (0 or non zero) to the JVM

EXAMPLES
Config file

javabridge.conf
Both # and ; are treated as start of comment flags in this file
You MUST have at least JavaBridge.jar in the class path definition
You can do this by setting "CLASSPATH" environment variable, or as
below with the "classpath" configure entries or by dropping it into
the basejarsearch directory defined below.
(this last is probably the easiest)
If you want JDBC (or any other class external to your JVM) you must
include the relevant jar on "CLASSPATH" environment variable, or
in this file as below.
Note: that environment "CLASSPATH" is included AFTER any entries below.

The location of this file can be defined by setting "JAVABRIDGE_CONFPATH"
environment variable.

If you want JDBC you should use Class.forName(my.company.driver)
to load it into the JVM’s DriverManager from the class path at
runtime.

basejarsearch=C:/msysOptMount/winExtra/lib/javabridge/jars

#classpath=C:/msysOptMount/winExtra/lib/javabridge/jars/JDBC/sqliteJDBC/sqlite-jdbc-3.8.7.jar
#classpath=/SomeDir/JDBC/UDB2JDBC/db2jcc4.jar

Code
// testBridge.c
// The best domentation is an example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/stat.h>

#include "javabridge.h"

int
main(int argc, char **argv)
{

char myRoot[PATH_MAX];
char confFile[PATH_MAX];

5 May 2015 5

javabr idge(3) Librar y Functions Manual javabr idge(3)

// Stand alone application - find out where the application is
// running from so that we can pass an absolute path to THIS apps
// configuration instead of using the default
// /usr/local/etc/javabridge/ configuration.
// Note: if you installed the library into a non-standard
// location (e.g. /opt/test/) and you want a site wide
// configuration you sould define or set confFile to
// "/opt/test/etc/javabridge/javabridge.conf"

struct stat aFileD;

#if defined(WIN32) || defined(_WIN32)
#define PATHSEPERATOR ";"

#else
#define PATHSEPERATOR ":"

#endif // WIN32

strcpy(confFile, argv[0]);

#if defined(WIN32) || defined(_WIN32)
// Windows nonsense
int i;
for (i=0; i < strlen(confFile); i++)

if (confFile[i] == ’\’)
confFile[i] = ’/’;

#endif
if (confFile[0] == ’/’ || (confFile[1] == ’:’ && confFile[2] == ’/’))

// called with an absolute invocation
strcpy(myRoot, confFile);

else
{

// called with an relative path invocation
if (strchr(confFile, ’/’))
{

// called with an relative path invocation
getcwd(myRoot, sizeof(myRoot));
strcat(myRoot, "/");
strcat(myRoot, confFile);

}
else
{

//check current dir (may not have . on the path)
getcwd(myRoot, sizeof(myRoot));
strcat(myRoot, "/");
strcat(myRoot, confFile);
if(stat(myRoot, &aFileD) == -1)
{

// called without path, search path to find ourselves
char *aPath;
char *sysPath = getenv("PATH");
if (sysPath != NULL)
{

aPath = strtok(sysPath, PATHSEPERATOR);
while (aPath != NULL)

5 May 2015 6

javabr idge(3) Librar y Functions Manual javabr idge(3)

{
strcpy(myRoot, aPath);
strcat(myRoot, "/");
strcat(myRoot, confFile);
if(stat(myRoot, &aFileD) != -1)

break;
aPath = strtok(NULL, PATHSEPERATOR);

}
free(sysPath);

}
}

}
}

*(strrchr(myRoot, ’/’)) = 0;
strcpy(confFile, myRoot);
strcat(confFile, "/javabridge.conf");

// Information about which .conf file is used
fprintf(stderr, "ConfFile:%s0, confFile);
fflush(stderr);

// We already have something listening on the default port of 9267,
// override it here to an unused port
// (OK not really - but for examples sake)
putenv("JAVABRIDGE_LISTENPORT=9267"); //no setenv in MinGW!

// Start the php-java-bridge listener
// If its already running, use it otherwise fork a call to start it.

// Three ways to set conf file location to the library:
#if defined(USEJENVIRONMENT)

// Via environment variable
strcpy(confFile, "JAVABRIDGE_CONFPATH=");
strcat(confFile, myRoot);
putenv(confPath);
javaConnection jvm = startJservice(NULL);

#else
// Direct invocation
javaConnection jvm = startJservice(confFile);

#endif
// Or export JAVABRIDGE_CONFPATH in a wrapping shell script
// and skip all of the above path nonsense

// Should now have the JavaBridge listening on 9267
// Do some stuff with it.

// Declare something to catch errors with
// Note this merely an unsigned int, but JavaBridge.jar keeps
// objects as such, and it writes any exception as an instance of
// exception, so to work with errors we need to remember what it.
javaObject anException;

5 May 2015 7

javabr idge(3) Librar y Functions Manual javabr idge(3)

// Simple test to see if we have something working here

// Construct a Long object.
// Note: the parameters to the constructor which creates the object
// with value 6
javaObject myLong = constructJobject(jvm, &anException,

"java.lang.Long", "%d", 6);
// Report errors. Should probably exit(FAIL) here cause nothing
// further will work if we cannot get past here.
// Note: getException allocates space for the returned string,
// remember to free it.
if (!myLong)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e); free(e);
}
// Get the value of the object.
char *ans = getJstring(jvm, myLong);
if (ans && !strcmp(ans, "6"))

printf("PASS (getJstring) *** Got:%s Expected ’6’0, ans);
else

printf("FAIL (getJstring) *** Got:%s Expected ’6’0, ans);
// getString dynamically allocates space for the returned
// answer, remember to free it.
free(ans);
// Test some other mappings for java values to C values in
// the library
if (getJlong(jvm, myLong) == 6)

printf("PASS (getJlong) *** Got:%lld Expected ’6’0,
getJlong(jvm, myLong));

else
printf("FAIL (getJlong) *** Got:%lld Expected ’6’0,
getJlong(jvm, myLong));

if (getJdouble(jvm, myLong) == 6.0)
printf("PASS (getJdouble) *** Got:%f Expected ’6.0’0,
getJdouble(jvm, myLong));

else
printf("FAIL (getJdouble) *** Got:%f Expected ’6.0’0,
getJdouble(jvm, myLong));

// Release what we have used so that the JVM can do garbage
// collection.
releaseJobject(jvm, myLong);

// More complex example - do some JDBC stuff.

// Get the class definition for "Class"
// Note: this is not creating an
// object (java.lang.Class cannot be instantiated)
javaObject aClass = getJclass(jvm, &anException, "java.lang.Class");
if (!aClass)

{ char *e = getJexception(jvm, anException);
printf("Failed: %s0, e);
free(e);

}

5 May 2015 8

javabr idge(3) Librar y Functions Manual javabr idge(3)

else
printf("PASS (getJclass) *** Got:java.lang.Class0);

// Dynamically load a JDBC driver.
// Note: this is still not creating a java object, simply calling
// the static method "forName" of the class "Class"
javaObject jdbcDrv = invokeJobject(jvm, &anException, aClass,
"forName", "%s", "org.sqlite.JDBC");

if (!jdbcDrv)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:java.lang.Class.forName(org.sqlite.JDBC)0);
// We have loaded the driver, get rid of what we used to do so.
releaseJobject(jvm, jdbcDrv);
releaseJobject(jvm, aClass);

// Find the DriverManager class
javaObject manager = getJclass(jvm, &anException,
"java.sql.DriverManager");

if (!manager)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (getJclass) *** Got:java.sql.DriverManager0);
// Use DriverManager.getConnection to instantiate our first
// real java object - a JDBC connection.
javaObject connection = invokeJobject(jvm, &anException, manager,
"getConnection", "%s", "jdbc:sqlite:testJDBC.sdb");

if (!connection)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:java.sql.DriverManager.getConnection(jdbc:sqlite:testJDBC.sdb)0);
// Do some stuff with the connection object
invokeJobject(jvm, &anException, connection, "setAutoCommit",
"%b", 1);

// and get a new object from the connection object so that we can
// do useful stuff
javaObject statement = invokeJobject(jvm, &anException, connection,
"createStatement", NULL);

if (!statement)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:Connection.createStatement()0);
// Do some useful stuff

5 May 2015 9

javabr idge(3) Librar y Functions Manual javabr idge(3)

invokeJobject(jvm, &anException, statement, "execute", "%s",
"drop table test1");

if (!invokeJobject(jvm, &anException, statement, "execute", "%s",
"create table test1(col1 char(10), col2 decimal(11.2))"))

{ char *e = getJexception(jvm, anException);
printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:Statement.execute(create table)0);
if (!invokeJobject(jvm, &anException, statement, "execute", "%s",

"insert into test1 values(’rowThe1st’, 99.99)"))
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:Statement.execute(insert)0);
if (!invokeJobject(jvm, &anException, statement, "execute", "%s",
"insert into test1 values(’rowThe2nd’, 0.01)"))

{ char *e = getJexception(jvm, anException);
printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:Statement.execute(insert)0);
// OK, now try and get something out of the data we have written
if (!invokeJobject(jvm, &anException, statement, "execute", "%s",

"select sum(col2) as tot from test1"))
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
javaObject resultset = invokeJobject(jvm, &anException, statement,

"getResultSet", NULL);
if (!statement)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
invokeJobject(jvm, &anException, resultset, "next", NULL);
javaObject aString = invokeJobject(jvm, &anException, resultset,
"getString", "%s", "tot");

if (getJdouble(jvm, aString) == 100.0)
printf("PASS (jdbc)*** Got:%s Expected 100.000,
getJstring(jvm, aString));

else
printf("FAIL (jdbc)*** Got:%s Expected 100.000,
getJstring(jvm, aString));

// Release what we have used so the JVM can do garbage collection
releaseJobject(jvm, aString);
// Close our result set and allow the JVM to garbage collect it
invokeJobject(jvm, &anException, resultset, "close", NULL);
releaseJobject(jvm, resultset);

5 May 2015 10

javabr idge(3) Librar y Functions Manual javabr idge(3)

// Test that we are in fact getting exceptions correctly.
if (!invokeJobject(jvm, &anException, statement, "execute", "%s",
"create table test1(col1 char(10), col2 decimal(11.2))"))

{
char *e = getJexception(jvm, anException);
printf("PASS (exception)*** Got:%s 0, e);
printf(" Expected ’SQLException: table test1 already exists’0);
free(e);

}
else
{

printf("FAIL (exception)*** Got:Success ");
printf("Expected ’SQLException: table test1 already exists’0);

}
// Clean up
invokeJobject(jvm, &anException, statement, "close", NULL);
releaseJobject(jvm, statement);
invokeJobject(jvm, &anException, connection, "close", NULL);
releaseJobject(jvm, connection);
releaseJobject(jvm, manager);

// And drop our connection to the running application server
// Note this doesn’t really stop the server running, it simply
// tells the server that we are not interested in further
// communication, and that it can clean up, close sockets and etc.
stopJservice(jvm);

// OR if you really don’t need the service anymore do an ugly thing
// and kill it dead.
// Note this really stops the server running in an unclean way,
// and anything opened by the server will be dropped where it is.

// Cause I am testing & testing & testing, I don’t want the service
// left running.

// Got to get a new connections, as it it is dropped above.
jvm = startJservice(confFile);
// And kill it
killJservice(jvm);

}

SEE ALSO
http://php-java-br idge.sf.net

REPORTING PROBLEMS
I am a long way from being fluent in java. If your issue is with java consult the java api docs, or
look at oracles web site.

There is javabr idgeservice.bat (for windows) and javabr idgeservice.sh (for unix like OS) in
install_path/etc. These scripts allow interactivly starting JavaBr idge.jar with debugging turned on
from a console. You may get a better idea of where things are failing by inspecting the output here
while running your code.

php-java-br idge has a mailing list for users and comprehensive documentation for their bridge on

5 May 2015 11

javabr idge(3) Librar y Functions Manual javabr idge(3)

source forge.

If you are certain that you have found a bug in the C librar y, dir k@ddtdebuggers.co.za

AUTHORS
Version 0.9, 2015/05/05

Copyr ight (C) 2015 Dirk Toms

This software is provided ’as-is’, without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any pur pose, including commercial appli-
cations, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the
or iginal software. If you use this software in a product, an acknowledgment in the product docu-
mentation would be appreciated but is not required.

2. This notice may not be removed or altered from any source distribution.

This software interfaces with php-java-br idge provided at http://php-java-br idge.sf.net While this
librar y is not afilliated to that group, it is useless without the package that they supply. To my best
understanding php-java-br idge is licensed for all use without restriction.

My deepest appreciation goes to the php-java-br idge team.

5 May 2015 12

javabr idge(3) Librar y Functions Manual javabr idge(3)

NAME
JavaBr idge − Enable invocation of java classes from C

SYNOPSIS
Enable C to talk with the protocol exposed by php-java-br idge. Alter natly, allow C to call java with-
out complex JNI.

DESCRIPTION
The javabr idge librar y is a C binding of the communication protocol utilised by php-java-br idge.

(Please refer to http://php-java-br idge.sf.net for that project)

The motivation for this librar y was frustration with other methods of getting C to invoke java. I find
JNI with its dependancy on java versions and etc. to be cumbersome - particular ly when cross
compiling. Also with either JNI or a direct system call to java there is an overhead for each
invocation with the JVM instantiating. To do RPC / SOAP calls to a java application server
requires Tomcat or the like running, and for any simple application I again found this to be cum-
bersome.

The good people at php-java-br idge.sf.net have built an excellent pure java application that can
either be installed into a java application server or can be run in a standalone fashion. Their
project provides a bridge allowing PHP to call java. Their method is a simple XML communication
from PHP to the java bridge application. The application takes care of reflecting java classes
called for, and sends the answers back to PHP.

This librar y is an C implimentation of that communication protocol. Additionally, this librar y can
fork the java bridge application in standalone mode so that a java ser vlet engine is not required.

In the event you wish to run java-pr idge in a proper application server like Tomcat, please refer to
the extensive documentation available at http://php-java-br idge.sf.net The documentation herein
is confined to starting a stand-alone application server, and the bindings provided to enable C to
talk to that server in-order to invoke java from C.

LIBRARY DETAIL
Environment variables

JAVABRIDGE_LISTENPORT overr ides the compiled in default TCP port (9267) that the java
application server is (or should) listening on.

JAVABRIDGE_CONFPATH overr ides the location of javabr idge.conf. This should be an absolute
path to the relevant file. If this exists it overr ides the path passed to the librar y from star tJservice

CLASSPATH makes additional java classes available to the java application server. Nor mal java
syntax for CLASSPATH on your platfor m applies

TypeDefs in the library
javaConnection is an int. Carries an opened socket to the java application server.

javaObject is an unsigned int. Carries an particular java class or object.

Defined return values
jERROR === 0 jFALSE === -1 jTRUE === -2 jVOID === -3

Java application server functions
javaConnection star tJser vice (char *confPath)

This should be the first call to the libarar y.

It will first test if the java application server is listening on the configured port, and if not it will start
the server. It then opens communication to the running java application server

The function will abort (i.e. exit with failure) under the following circumstances.

5 May 2015 1

javabr idge(3) Librar y Functions Manual javabr idge(3)

JavaBr idge.jar is not locatable on the classpath definined in either javabr idge.conf or by
the CLASSPATH environment var iable.

On windows, TCP/IP initialisation failure occurs.

Inability to create a socket.

Communication is established to some service at JAVABRIDGE_LISTENPORT, but that
ser vice does not respond as expected.

When no servce is found at JAVABRIDGE_LISTENPORT, and a for k of the standalone
java application server fails.

A standalone java application server is star ted but does not respond as expected within
120 seconds.

It returns a handle to talk to the service with. In reality the handle is a connected socket.

void stopJservice (ja vaConnection)

This should be the last call to the libarar y.

It closes communication with the java application server. The paramter is the socket that is
retur ned when opening a connection to the server.

Note: this DOES NOT stop the java application server running. If you REALLY want to stop the
application server, see stopJser vice below. Obviously, after this nothing will wor k, including
stopJser vice

void killJservice (ja vaConnection)

This shouldn’t be called unless you REALLY want to stop the JavaBr idge ser vice.

It forces a halt of the JVM and any stuff opened by the JVM will be left where they were. The
paramter is the socket that is returned when opening a connection to the server.

Note: this STOPS the java application server uncleanly. I don’t recommend that you do this to an
instance running in Tomcat or the like, how ever it will successfully kill a standalone invocation.
Obviously, after this nothing will wor k, including stopJser vice

Java bridg e communication functions
javaObject getJclass (ja vaConnection sock, ja vaObject *jException, char *jClass)

Allows manipulation of a java class without instatitating an object. Java exper ts can help with
when to do this. A good example is when you want to do java.lang.Class.forName("someClass").

Input is a handle of an open socket to the server, the address of an exception javaObject, and a
str ing defining the class desired, for example "java.sql.Dr iverManager".

It returns type javaObject, or any of the jXXXX answers. If jERROR (== 0) is returned then jEx-
ception will refer to a java exception that can be interrogated for more detail.

Note: The return is NOT a real java object, and is only used as a refererence to static class mem-
bers.

javaObject constructJobject (ja vaConnection sock, ja vaObject *jException, char *jClass,
char *formatStr , ...)

Creates an instance (or object) from a class. So:

javaObject aString = constructJobject(jvm, &anException,
"java.lang.String", "%s", "Hello World");

is equivalant to the java statement

aString = new String("Hello World");

Input is a handle of an open socket to the server, the address of an exception javaObject, a string
defining the class desired, a for mat str ing defining paramaters to the java class instantition, and

5 May 2015 2

javabr idge(3) Librar y Functions Manual javabr idge(3)

the actual paramaters to the java class. (See Parameters&for mats below for more infor mation
about this).

It returns type javaObject, or 0 on failure. If jERROR (== 0) is returned then jException will refer to
a java exception that can be interrogated for more detail.

javaObject in vokeJobject (ja vaConnection sock, ja vaObject *jException, ja vaObject jObj,
char *jMethod, char *formatStr , ...)

Allows calling a method in an instantiated java class (or object), or calling a static method in a
java reference class. So:

javaObject aNum_a = constructJobject(jvm, &anException,
"java.math.BigInteger", "%s", "6");

javaObject aNum_b = constructJobject(jvm, &anException,
"java.math.BigInteger", "%d", 1);

javaObject aNum_c in vokeJobject(jvm, &anException,
aNum_a, ad d , %o , aNum_b);

is equivalant to the java

import java.math.*;
aNum_a = new BigInteger("6");
aNum_b = new BigInteger(1);
aNum_c = aNum_a.add(aNum_b);

Input is a handle of an open socket to the server, the address of an exception javaObject, a previ-
ously instantiated object, a string defining the object method desired, a for mat str ing defining
paramaters to the java method, and the actual paramaters for the method. (See Parameters&for-
mats below for more infor mation about this).

It returns type javaObject, or any of the jXXXX answers. If jERROR (== 0) is returned then jEx-
ception will refer to a java exception that can be interrogated for more detail.

int setJpr oper ty (javaConnection sock, ja vaObject jObj, char *jPr oper ty , char *f ormatStr , ...
)

Allows setting an object property. I haven’t found use for this yet, but php-java-br idge impliments
it, and I guess a java exper t will know when to do this.

Input is a handle of an open socket to the server, the address of an exception javaObject, a previ-
ously instantiated object, a string defining the object property desired, a for mat str ing defining
paramaters to the java proper ty, and the actual paramaters for the property. (See Parameters&for-
mats below for more infor mation about this). I guess by definition you should only pass one
parameter to a class property.

It returns non zero on success, or jERROR on failure. If jERROR (= 0) is returned then jException
will refer to a java exception that can be interrogated for more detail.

void releaseJobject (ja vaConnection sock, ja vaObject jObj)

Tells the java application server that you are done with this construct. Allows garbage collection in
the invoked JVM for this construct. In shor t, if you create it, then release it.

Input is a handle of an open socket to the server, and previously instantiated object

char *getJexception (ja vaConnection sock, ja vaObject jObj)

Given that some funtion has returned jERROR (== 0), return a str ing representation of the java
exception.

Note: you should free() this string when you are done with it.

Note: you should also releaseJobject on the jException object when you are done with it
to allow the JVM to do garbage collection.

5 May 2015 3

javabr idge(3) Librar y Functions Manual javabr idge(3)

Input is a handle of an open socket to the server, and a previously set jException object.

It returns a char pointer to the error string on success, or NULL otherwise.

void releaseJobject (ja vaConnection sock, ja vaObject jObj)

Tells the java application server that you are done with this construct. Allows garbage collection in
the invoked JVM for this construct. In shor t, if you create it, then release it. Remeber to invoke
close() or release or whatever java expects of the object to clear references in the JVM to this
object first.

Input is a handle of an open socket to the server, and previously instantiated object.

char *getJexception (ja vaConnection sock, ja vaObject jObj)

Given that some funtion has returned jERROR (== 0), return a str ing representation of the java
exception.

Note: you should free() this string when you are done with it.

Note: you should also releaseJobject on the jException object when you are done with it
to allow the JVM to do garbage collection.

int getJboolean (ja vaConnection sock, ja vaObject jObj)

Attempt to get a BOOLEAN (TRUE == !0 or FALSE == 0) result from the given object.

Input is a handle of an open socket to the server, and previously instantiated object.

Will return either a 0 or a 1.

char *getJstring (ja vaConnection sock, ja vaObject jObj)

Attempt to get a string (char *) result from the given object.

Note: you should free() this string when you are done with it.

Input is a handle of an open socket to the server, and previously instantiated object.

Will return either a 0 or a 1.

int64_t getJlong (ja vaConnection sock, ja vaObject jObj)

Attempt to get a long (int64_t) result from the given object.

Input is a handle of an open socket to the server, and previously instantiated object.

Will return (as best as it can) a (signed) numer ic representation of the requested class.

doub le getJdoub le (javaConnection sock, ja vaObject jObj) Attempt to get a floating (double)
result from the given object.

Input is a handle of an open socket to the server, and previously instantiated object.

Will return (as best as it can) a double representation of the requested class. On failure returns C
"nan".

Parameters&formats
Instatiation of java classes or calls to java methods in a object / class often need parameters. This
librar y handles that requirement similarly to printf() and friends. The first parameter is a string with
format flags defining how the remaining parameters should be treated.

Anything after the (required) for mat str ing is interpreted as a particular C type and passed
through to the java application server as a representation of that parameter.

Where a parameter can be expexted but you don’t wish or need to send one, pass a NULL to the
format string parameter.

Format strings currently understood are:

%o - send a "java object" or "class" to the JVM

5 May 2015 4

javabr idge(3) Librar y Functions Manual javabr idge(3)

%s - send a string to the JVM

%d - send an integer to the JVM

%f - send a double (or float) to the JVM

%b - send a boolean (0 or non zero) to the JVM

EXAMPLES
Config file

javabridge.conf
Both # and ; are treated as start of comment flags in this file
You MUST have at least JavaBridge.jar in the class path definition
You can do this by setting "CLASSPATH" environment variable, or as
below with the "classpath" configure entries or by dropping it into
the basejarsearch directory defined below.
(this last is probably the easiest)
If you want JDBC (or any other class external to your JVM) you must
include the relevant jar on "CLASSPATH" environment variable, or
in this file as below.
Note: that environment "CLASSPATH" is included AFTER any entries below.

The location of this file can be defined by setting "JAVABRIDGE_CONFPATH"
environment variable.

If you want JDBC you should use Class.forName(my.company.driver)
to load it into the JVM’s DriverManager from the class path at
runtime.

basejarsearch=C:/msysOptMount/winExtra/lib/javabridge/jars

#classpath=C:/msysOptMount/winExtra/lib/javabridge/jars/JDBC/sqliteJDBC/sqlite-jdbc-3.8.7.jar
#classpath=/SomeDir/JDBC/UDB2JDBC/db2jcc4.jar

Code
// testBridge.c
// The best domentation is an example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/stat.h>

#include "javabridge.h"

int
main(int argc, char **argv)
{

char myRoot[PATH_MAX];
char confFile[PATH_MAX];

5 May 2015 5

javabr idge(3) Librar y Functions Manual javabr idge(3)

// Stand alone application - find out where the application is
// running from so that we can pass an absolute path to THIS apps
// configuration instead of using the default
// /usr/local/etc/javabridge/ configuration.
// Note: if you installed the library into a non-standard
// location (e.g. /opt/test/) and you want a site wide
// configuration you sould define or set confFile to
// "/opt/test/etc/javabridge/javabridge.conf"

struct stat aFileD;

#if defined(WIN32) || defined(_WIN32)
#define PATHSEPERATOR ";"

#else
#define PATHSEPERATOR ":"

#endif // WIN32

strcpy(confFile, argv[0]);

#if defined(WIN32) || defined(_WIN32)
// Windows nonsense
int i;
for (i=0; i < strlen(confFile); i++)

if (confFile[i] == ’\’)
confFile[i] = ’/’;

#endif
if (confFile[0] == ’/’ || (confFile[1] == ’:’ && confFile[2] == ’/’))

// called with an absolute invocation
strcpy(myRoot, confFile);

else
{

// called with an relative path invocation
if (strchr(confFile, ’/’))
{

// called with an relative path invocation
getcwd(myRoot, sizeof(myRoot));
strcat(myRoot, "/");
strcat(myRoot, confFile);

}
else
{

//check current dir (may not have . on the path)
getcwd(myRoot, sizeof(myRoot));
strcat(myRoot, "/");
strcat(myRoot, confFile);
if(stat(myRoot, &aFileD) == -1)
{

// called without path, search path to find ourselves
char *aPath;
char *sysPath = getenv("PATH");
if (sysPath != NULL)
{

aPath = strtok(sysPath, PATHSEPERATOR);
while (aPath != NULL)

5 May 2015 6

javabr idge(3) Librar y Functions Manual javabr idge(3)

{
strcpy(myRoot, aPath);
strcat(myRoot, "/");
strcat(myRoot, confFile);
if(stat(myRoot, &aFileD) != -1)

break;
aPath = strtok(NULL, PATHSEPERATOR);

}
free(sysPath);

}
}

}
}

*(strrchr(myRoot, ’/’)) = 0;
strcpy(confFile, myRoot);
strcat(confFile, "/javabridge.conf");

// Information about which .conf file is used
fprintf(stderr, "ConfFile:%s0, confFile);
fflush(stderr);

// We already have something listening on the default port of 9267,
// override it here to an unused port
// (OK not really - but for examples sake)
putenv("JAVABRIDGE_LISTENPORT=9267"); //no setenv in MinGW!

// Start the php-java-bridge listener
// If its already running, use it otherwise fork a call to start it.

// Three ways to set conf file location to the library:
#if defined(USEJENVIRONMENT)

// Via environment variable
strcpy(confFile, "JAVABRIDGE_CONFPATH=");
strcat(confFile, myRoot);
putenv(confPath);
javaConnection jvm = startJservice(NULL);

#else
// Direct invocation
javaConnection jvm = startJservice(confFile);

#endif
// Or export JAVABRIDGE_CONFPATH in a wrapping shell script
// and skip all of the above path nonsense

// Should now have the JavaBridge listening on 9267
// Do some stuff with it.

// Declare something to catch errors with
// Note this merely an unsigned int, but JavaBridge.jar keeps
// objects as such, and it writes any exception as an instance of
// exception, so to work with errors we need to remember what it.
javaObject anException;

5 May 2015 7

javabr idge(3) Librar y Functions Manual javabr idge(3)

// Simple test to see if we have something working here

// Construct a Long object.
// Note: the parameters to the constructor which creates the object
// with value 6
javaObject myLong = constructJobject(jvm, &anException,

"java.lang.Long", "%d", 6);
// Report errors. Should probably exit(FAIL) here cause nothing
// further will work if we cannot get past here.
// Note: getException allocates space for the returned string,
// remember to free it.
if (!myLong)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e); free(e);
}
// Get the value of the object.
char *ans = getJstring(jvm, myLong);
if (ans && !strcmp(ans, "6"))

printf("PASS (getJstring) *** Got:%s Expected ’6’0, ans);
else

printf("FAIL (getJstring) *** Got:%s Expected ’6’0, ans);
// getString dynamically allocates space for the returned
// answer, remember to free it.
free(ans);
// Test some other mappings for java values to C values in
// the library
if (getJlong(jvm, myLong) == 6)

printf("PASS (getJlong) *** Got:%lld Expected ’6’0,
getJlong(jvm, myLong));

else
printf("FAIL (getJlong) *** Got:%lld Expected ’6’0,
getJlong(jvm, myLong));

if (getJdouble(jvm, myLong) == 6.0)
printf("PASS (getJdouble) *** Got:%f Expected ’6.0’0,
getJdouble(jvm, myLong));

else
printf("FAIL (getJdouble) *** Got:%f Expected ’6.0’0,
getJdouble(jvm, myLong));

// Release what we have used so that the JVM can do garbage
// collection.
releaseJobject(jvm, myLong);

// More complex example - do some JDBC stuff.

// Get the class definition for "Class"
// Note: this is not creating an
// object (java.lang.Class cannot be instantiated)
javaObject aClass = getJclass(jvm, &anException, "java.lang.Class");
if (!aClass)

{ char *e = getJexception(jvm, anException);
printf("Failed: %s0, e);
free(e);

}

5 May 2015 8

javabr idge(3) Librar y Functions Manual javabr idge(3)

else
printf("PASS (getJclass) *** Got:java.lang.Class0);

// Dynamically load a JDBC driver.
// Note: this is still not creating a java object, simply calling
// the static method "forName" of the class "Class"
javaObject jdbcDrv = invokeJobject(jvm, &anException, aClass,
"forName", "%s", "org.sqlite.JDBC");

if (!jdbcDrv)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:java.lang.Class.forName(org.sqlite.JDBC)0);
// We have loaded the driver, get rid of what we used to do so.
releaseJobject(jvm, jdbcDrv);
releaseJobject(jvm, aClass);

// Find the DriverManager class
javaObject manager = getJclass(jvm, &anException,
"java.sql.DriverManager");

if (!manager)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (getJclass) *** Got:java.sql.DriverManager0);
// Use DriverManager.getConnection to instantiate our first
// real java object - a JDBC connection.
javaObject connection = invokeJobject(jvm, &anException, manager,
"getConnection", "%s", "jdbc:sqlite:testJDBC.sdb");

if (!connection)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:java.sql.DriverManager.getConnection(jdbc:sqlite:testJDBC.sdb)0);
// Do some stuff with the connection object
invokeJobject(jvm, &anException, connection, "setAutoCommit",
"%b", 1);

// and get a new object from the connection object so that we can
// do useful stuff
javaObject statement = invokeJobject(jvm, &anException, connection,
"createStatement", NULL);

if (!statement)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:Connection.createStatement()0);
// Do some useful stuff

5 May 2015 9

javabr idge(3) Librar y Functions Manual javabr idge(3)

invokeJobject(jvm, &anException, statement, "execute", "%s",
"drop table test1");

if (!invokeJobject(jvm, &anException, statement, "execute", "%s",
"create table test1(col1 char(10), col2 decimal(11.2))"))

{ char *e = getJexception(jvm, anException);
printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:Statement.execute(create table)0);
if (!invokeJobject(jvm, &anException, statement, "execute", "%s",

"insert into test1 values(’rowThe1st’, 99.99)"))
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:Statement.execute(insert)0);
if (!invokeJobject(jvm, &anException, statement, "execute", "%s",
"insert into test1 values(’rowThe2nd’, 0.01)"))

{ char *e = getJexception(jvm, anException);
printf("Failed: %s0, e);
free(e);

}
else

printf("PASS (invokeJobject) *** Got:Statement.execute(insert)0);
// OK, now try and get something out of the data we have written
if (!invokeJobject(jvm, &anException, statement, "execute", "%s",

"select sum(col2) as tot from test1"))
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
javaObject resultset = invokeJobject(jvm, &anException, statement,

"getResultSet", NULL);
if (!statement)
{ char *e = getJexception(jvm, anException);

printf("Failed: %s0, e);
free(e);

}
invokeJobject(jvm, &anException, resultset, "next", NULL);
javaObject aString = invokeJobject(jvm, &anException, resultset,
"getString", "%s", "tot");

if (getJdouble(jvm, aString) == 100.0)
printf("PASS (jdbc)*** Got:%s Expected 100.000,
getJstring(jvm, aString));

else
printf("FAIL (jdbc)*** Got:%s Expected 100.000,
getJstring(jvm, aString));

// Release what we have used so the JVM can do garbage collection
releaseJobject(jvm, aString);
// Close our result set and allow the JVM to garbage collect it
invokeJobject(jvm, &anException, resultset, "close", NULL);
releaseJobject(jvm, resultset);

5 May 2015 10

javabr idge(3) Librar y Functions Manual javabr idge(3)

// Test that we are in fact getting exceptions correctly.
if (!invokeJobject(jvm, &anException, statement, "execute", "%s",
"create table test1(col1 char(10), col2 decimal(11.2))"))

{
char *e = getJexception(jvm, anException);
printf("PASS (exception)*** Got:%s 0, e);
printf(" Expected ’SQLException: table test1 already exists’0);
free(e);

}
else
{

printf("FAIL (exception)*** Got:Success ");
printf("Expected ’SQLException: table test1 already exists’0);

}
// Clean up
invokeJobject(jvm, &anException, statement, "close", NULL);
releaseJobject(jvm, statement);
invokeJobject(jvm, &anException, connection, "close", NULL);
releaseJobject(jvm, connection);
releaseJobject(jvm, manager);

// And drop our connection to the running application server
// Note this doesn’t really stop the server running, it simply
// tells the server that we are not interested in further
// communication, and that it can clean up, close sockets and etc.
stopJservice(jvm);

// OR if you really don’t need the service anymore do an ugly thing
// and kill it dead.
// Note this really stops the server running in an unclean way,
// and anything opened by the server will be dropped where it is.

// Cause I am testing & testing & testing, I don’t want the service
// left running.

// Got to get a new connections, as it it is dropped above.
jvm = startJservice(confFile);
// And kill it
killJservice(jvm);

}

SEE ALSO
http://php-java-br idge.sf.net

REPORTING PROBLEMS
I am a long way from being fluent in java. If your issue is with java consult the java api docs, or
look at oracles web site.

There is javabr idgeservice.bat (for windows) and javabr idgeservice.sh (for unix like OS) in
install_path/etc. These scripts allow interactivly starting JavaBr idge.jar with debugging turned on
from a console. You may get a better idea of where things are failing by inspecting the output here
while running your code.

php-java-br idge has a mailing list for users and comprehensive documentation for their bridge on

5 May 2015 11

javabr idge(3) Librar y Functions Manual javabr idge(3)

source forge.

If you are certain that you have found a bug in the C librar y, dir k@ddtdebuggers.co.za

AUTHORS
Version 0.9, 2015/05/05

Copyr ight (C) 2015 Dirk Toms

This software is provided ’as-is’, without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any pur pose, including commercial appli-
cations, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the
or iginal software. If you use this software in a product, an acknowledgment in the product docu-
mentation would be appreciated but is not required.

2. This notice may not be removed or altered from any source distribution.

This software interfaces with php-java-br idge provided at http://php-java-br idge.sf.net While this
librar y is not afilliated to that group, it is useless without the package that they supply. To my best
understanding php-java-br idge is licensed for all use without restriction.

My deepest appreciation goes to the php-java-br idge team.

5 May 2015 12

